女川原子力発電所
基準地震動の策定のうち
震源を特定せず策定する地震動について

平成28年6月3日
東北電力株式会社
1. 検討対象地震と検討概要 ... 2
2. Mw6.5以上の地震について ... 4
 2.1 2008年岩手・宮城内陸地震 .. 5
 2.2 2000年鳥取県西部地震 .. 26
3. Mw6.5未満の地震について ... 40
 3.1 観測記録の収集・整理 .. 41
 3.2 2004年北海道留萌支庁南部地震 ... 46
 3.3 2013年栃木県北部地震 ... 78
 3.4 2011年茨城県北部地震 ... 86
 3.5 2011年和歌山県北部地震 ... 93
 3.6 2011年長野県北部地震 ... 100
 3.7 まとめ ... 107
4. 震源を特定せず策定する地震動の検討結果 109
参考文献 ... 112
1. 検討対象地震と検討概要
1. 検討対象地震と検討概要

「基準地震動及び耐震設計方針に係る審査ガイド」に示されている16地震

Mw6.5 以上: 2地震
1. 2008年岩手・宮城内陸地震
2. 2000年鳥取県西部地震

Mw6.5 未満: 14地震

影響の大きい地震観測記録の選定
(加藤ほか(2004)と暫定的に比較)

地質・地質構造、活断層の成熟度等の地域性について検討

影響の大きい地震観測記録: 5地震
- 2004年北海道留萌支庁南部地震
- 2013年栃木県北部地震
- 2011年茨城県北部地震
- 2011年和歌山県北部地震
- 2011年長野県西部地震

信頼性のある基盤地震動の評価

今回の資料範囲

「震源を特定せず策定する地震動」として考慮
- 2004年北海道留萌支庁南部地震

「震源を特定せず策定する地震動」の策定

表-1 収集対象となる内陸地域内の地震の例

<table>
<thead>
<tr>
<th>No</th>
<th>地震名</th>
<th>日時</th>
<th>規模</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2008年岩手・宮城内陸地震</td>
<td>2008/06/14</td>
<td>Mw6.9</td>
</tr>
<tr>
<td>2</td>
<td>2000年鳥取県西部地震</td>
<td>2000/10/06</td>
<td>Mw6.6</td>
</tr>
<tr>
<td>3</td>
<td>2011年長野県北部地震</td>
<td>2011/03/12</td>
<td>Mw6.2</td>
</tr>
<tr>
<td>4</td>
<td>1997年3月鹿児島県北部地震</td>
<td>1997/03/26</td>
<td>Mw6.1</td>
</tr>
<tr>
<td>5</td>
<td>2003年宮城県北部地震</td>
<td>2003/07/26</td>
<td>Mw6.1</td>
</tr>
<tr>
<td>6</td>
<td>1996年宮城県北部(東北)地震</td>
<td>1996/08/11</td>
<td>Mw6.0</td>
</tr>
<tr>
<td>7</td>
<td>1997年5月鹿児島県北部地震</td>
<td>1997/05/13</td>
<td>Mw6.0</td>
</tr>
<tr>
<td>8</td>
<td>1998年宮城県内陸北部地震</td>
<td>1998/09/03</td>
<td>Mw5.9</td>
</tr>
<tr>
<td>9</td>
<td>2011年新潟県南部地震</td>
<td>2011/03/15</td>
<td>Mw5.9</td>
</tr>
<tr>
<td>10</td>
<td>1997年山口県北部地震</td>
<td>1997/06/25</td>
<td>Mw6.8</td>
</tr>
<tr>
<td>11</td>
<td>2011年茨城県北部地震</td>
<td>2011/03/19</td>
<td>Mw6.8</td>
</tr>
<tr>
<td>12</td>
<td>2013年栃木県北部地震</td>
<td>2013/02/15</td>
<td>Mw5.8</td>
</tr>
<tr>
<td>13</td>
<td>2004年北海道留萌支庁南部地震</td>
<td>2004/12/14</td>
<td>Mw5.7</td>
</tr>
<tr>
<td>14</td>
<td>2005年福島県西沖地震</td>
<td>2005/04/20</td>
<td>Mw6.4</td>
</tr>
<tr>
<td>15</td>
<td>2012年茨城県北部地震</td>
<td>2012/10/02</td>
<td>Mw5.2</td>
</tr>
<tr>
<td>16</td>
<td>2011年和歌山県北部地震</td>
<td>2011/07/05</td>
<td>Mw5.0</td>
</tr>
</tbody>
</table>
2. Mw6.5以上の地震について
2.1 2008年岩手・宮城内陸地震
地震の概要

地震発生日時(気象庁他)
- 発生日時: 平成20年6月14日 8時43分
- 地震規模: M7.2(Mw6.9)
- 震源深さ: 8km
- 震源位置: 北緯39°1.7′, 東経140°52.8′

各地の震度及び被害状況
- 震度6強: 岩手県奥州市, 宮城県栗原市
- 震度6弱: 宮城県大崎市他
- 被害状況(消防庁): 住宅全壊30棟, 住宅半壊146棟, 死者17名, 負傷者425名

地震発生メカニズム他(気象庁)
- 発生機構解より, 西北西－東南東方向に圧縮軸を持つ逆断層型の地殻内で発生した地震。
- 今回の地震の震央周辺では, M7以上の地震は1914年秋田仙北地震(M7.1)以来約94年ぶりの地震。

(気象庁 平成20年6月 地震・火山月報に一部加筆)
2.1 2008年岩手・宮城内陸地震
地質・地質構造【震源域周辺の特徴】

- 新第三紀堆積岩類、第四紀火山噴出物が分布。
- カルデラが分布。
- 震源域に、東翼側が急傾斜する新第三紀層の褶曲構造。
 → 地形調査による隆起地域とも対応。
2.1 2008年岩手・宮城内陸地震
地質・地質構造【震源域周辺と女川原子力発電所敷地周辺の比較】

・ 岩手・宮城内陸地震の震源域周辺：新第三系（堆積岩、火山岩等）及び第四紀火山岩類が分布
・ 女川原子力発電所敷地周辺：中・古生界（堆積岩、火山岩及び深成岩類）が分布

震源域周辺と女川原子力発電所敷地周辺のシームレス地質図
(産業技術総合研究所, 地質図Naviに一部加筆)
2.1 2008年岩手・宮城内陸地震
地質・地質構造【震源域周辺と女川原子力発電所敷地周辺の比較】

20万分の1日本シームレス地質図 全国統一凡例

(産業技術総合研究所, 20万分の1日本シームレス地質図)
2.1 2008年岩手・宮城内陸地震
地質・地質構造【女川原子力発電所敷地周辺の特徴】

敷地は、硬質な中・古生界の砂岩及び頁岩を主とする堆積岩類等が広く分布する北上山地南端部に位置する。

中・古生界の堆積岩類は、褶曲構造による繰り返しを伴いながら概ね北西から南東にむかって年代が新しくなるように広く分布する。

敷地は、北上山地南端部のうち、南部の牡鹿半島付近の中生界ジュラ系分布域に位置し、敷地周辺と同様に褶曲構造で特徴づけられ、大局的には1組の背斜・向斜（小屋取背斜と鳴浜向斜）が認められる。

敷地周辺には、中・古生界に対応する高重力領域が広がっており、敷地は、この広範な高重力異常分布域のほぼ中央付近に位置する。

産業技術総合研究所（2013）のデータを使用
ブーゲー密度は 2.67g/cm³ と仮定
ブーゲー異常値のコンター間隔は2mGal
2.1 2008年岩手・宮城内陸地震
火山フロント・地殻熱流量

- 2008年岩手・宮城内陸地震の震源域周辺は火山フロント内に位置し、地殻熱流量が高い。一方、女川原子力発電所の敷地周辺は火山フロント外に位置し、地殻熱流量が低い。
2.1 2008年岩手・宮城内陸地震
東北地方のカルデラと地質断層, 第四紀火山の分布状況

【布原ほか(2008) 日本地質学会webサイト】
- 震源域は, 新生代後期(中新世後期～鮮新世)のカルデラの密集域である。
- 現在の火山フロントに一致し, 部分的に第四紀の火山噴出物に広く覆われている。

東北地方のカルデラと地質断層, 第四紀火山の分布状況
(布原ほか(2008)に一部加筆)
2.1 2008年岩手・宮城内陸地震
地すべり災害の地形地質的背景

【井口ほか(2010)】
● 2008年岩手・宮城内陸地震では、栗駒山周辺において多数の地すべり・土砂崩れが発生した。
● 多くの地すべりは、層すべり型の並進すべりであった。
● 今後も山地の直下で起きる内陸地震によって古いカルデラ内に堆積した湖成層が分布する地域や、降下火山灰が広く堆積している地域において巨大地すべりが発生する可能性を指摘することができる。そして既に巨大地すべり地形が分布している地域においては、それが今後の地震によって再滑動する可能性がある。
東北日本弧の第四紀テクトニクスは、東西圧縮応力による逆断層の活動に特徴づけられる。
震源域周辺には南北走向の逆断層が多数存在し、震源域は北上低地西縁断層帯の南方延長部に位置する。

岩手・宮城内陸地震 震央周辺の活断層分布図
(産業技術総合研究所:活断層データベースに一部加筆)
2.1 2008年岩手・宮城内陸地震
地表地震断層①

- 鈴木ほか(2008)では、震源域に「短いながらも明瞭な断層変位地形」が判読されている。

○鈴木ほか(2008)より抜粋
- 栗木立付近には短いながら明瞭な断層変位地形があり、低位段丘礫層堆積期以降に複数回、比較的活発な活動を繰り返していることが明らかとなった。
- 岩手・宮城内陸地震の震源域に短くとも活断層が存在し、それが地震活動と密接な関係を有していることが明らかになったことは、地震発生の長期予測において極めて重要である。少なくとも活断層が全く存在しない地域においてきたわけではなく、震源断層の活動と深く関わる活断層は存在している。

(鈴木ほか(2008))
2.1 2008年岩手・宮城内陸地震
地表地震断層②

- 近田ほか (2010) では、北北東—南南西トレンドの長さ約40kmの震源断層のうち、中央部の約20kmが地震断層として断続的に地表に現れたとしている。
- また、既往地質構造、変動地形、予測可能性について、余震域北端は出店断層の深部想定延長部にかかっており、その南延長に一関—石越撓曲が記載されていたが、同撓曲に第四紀後期の活動は認められていない。今回の地震の震源周辺には栗駒山、鳴子などの活火山が分布しているが、地震学的には活火山周辺で大地震が発生する可能性は低い。一方、地質図上には新第三系を切る北北東及び北東走向の断層が餅転から栃木立にかけて記載されているが、地震断層の一部は「餅転—細倉構造帯」に沿うように分布しており、今回の地震は大局的に餅転—細倉構造帯上で発生したと解釈できるとしている。
2.1 2008年岩手・宮城内陸地震
河成段丘面の高度分布と震源断層の関係

田力ほか(2009)では、今回の地震の震源域は北上低地帯西縁断層帯の南方延長部にあたり山地と低地の境界が北方から連続していること、GPS観測データなどからひずみ集中域として認識されていること、浅発微小地震が集中的に発生する地域であること、及び河成段丘の高度から下刻量分布を明らかにすることにより、活断層(伏在断層)の存在を推定することが可能であると考えられる。
2.1 2008年岩手・宮城内陸地震
地震地体構造

○ 塩見ほか(2003)による地震地体構造区分
- 2008年岩手・宮城内陸地震の震源域は、構造区の特徴を踏まえた場合、“東北日本弧内帯(8C)”に位置する。
- 女川原子力発電所は、“東北日本弧外帯(8B)”に位置する。

<table>
<thead>
<tr>
<th>項目</th>
<th>2008年岩手・宮城内陸地震の震源域</th>
<th>女川原子力発電所敷地周辺</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 構造区</td>
<td>8C 東北日本弧内帯</td>
<td>8B 東北日本弧外帯</td>
</tr>
<tr>
<td>(2) 地形・地質</td>
<td>火山性内弧, 隆起優勢,脊梁山地・出羽丘陵の火山帯（隆起帯）とその間の盆地列(沈降帯)、島弧方向の逆断層～褶曲発達</td>
<td>外弧隆起帯、安定域</td>
</tr>
<tr>
<td>(3) 活断層の密度・長さ・活動度・断層型ほか特徴</td>
<td>中, 中, B, 逆, 島弧と平行,隆起帯基部に発達</td>
<td>極小, 短(長), C, 逆・横</td>
</tr>
<tr>
<td>(4) 浅発大・中地震活動</td>
<td>高 東西圧縮逆断層型</td>
<td>低</td>
</tr>
</tbody>
</table>

(塩見ほか(2003)に一部加筆)
2.1 2008年岩手・宮城内陸地震
内陸地殻内地震の発生モデル

【長谷川ほか(2012)】
長谷川ほか(2012)は、スラブから島弧地殻への水の供給と東北脊梁山地歪集中帯を対象とした内陸地震の発生モデルを示している。

- 火山フロントは、マントルウェッジ内のシート状の上昇流がモホ面に達する場所に形成されている。
- また、第四紀火山の集中域とマントルウェッジの低速度域とのより明瞭な対応関係が、地震波トモグラフィにより得られたとされている。

プレートの沈み込みに伴うマントルウェッジ内の二次対流とスラブから島弧地殻への水の輸送経路を示す模式図
（島弧横断鉛直断面）（長谷川ほか（2012））

東北地方における島弧地殻の変形と内陸地震の発生過程を示すモデル
（a）

断層帯に沿う過剰間隙圧を示す模式図
（b）

（長谷川ほか（2012））
2. 1 2008年岩手・宮城内陸地震
S波速度偏差・P波速度偏差

【長谷川ほか(2012)】

- 岩手・宮城内陸地震の発生付近と女川原子力発電所敷地周辺のS波・P波速度偏差は異なることがわかる。

- 地震波トモグラフィにより、次の間には明瞭な空間的対応関係が明らかになったとしている。
 1. マントルウェッジ内の低速度域のうち、速度低下の度合の大きい領域の分布
 2. 地表の第四紀火山の分布
 3. 脊梁山地から背弧側に連なる地形の高まりの分布
 4. D90の浅い領域

- 東日本のP波速度構造を島弧横断鉛直断面に沿ってみた場合、マントルウェッジ内に、傾斜したP波低速度域が明瞭にイメージされ、火山フロントはこの傾斜した低速度域がモホ面と交わる場所の直上に分布する。

(a) マントルウェッジ内の傾斜した低速度層に沿うS波速度偏差
(b) 地形 (高度と速度偏差をカラースケールで示す。白丸は深部低周波地震、赤丸は第四紀火山。)
(c) 地震発生層の下限(D90)の分布 (D90をカラースケールで示す)
(長谷川ほか(2012)に一部加筆)
2.1 2008年岩手・宮城内陸地震
S波速度偏差・P波速度偏差

- 3.11地震後においても、岩手・宮城内陸地震の発生付近と女川原子力発電所敷地周辺のS波・P波速度偏差の知見に関して異なる傾向はみられない。

【Okada et al. (2015)】
- 3.11地震発生後の地震活動度について、仙台近郊、森吉山、千屋断層、山形-福島境界での内陸地震活動の変化があると言われている。
- これらの地震活動は下部地殻の低速度域の上部にある傾向となっている。

Fig. 10. Seismic velocity of the crust in NE Japan. (A) Vp perturbation at a depth of 6 km. Hypocenters of events at depths of 3-9 km are also shown. (B) Vs perturbation at a depth of 24 km. Hypocenters of events at depths <24 km are also shown. (C) E-W vertical cross-section of Vp perturbation at various latitudes. Locations of cross-sections are shown by gray lines in (A). White and black dots show hypocenters before and after the 2011 Tohoku-Oki earthquake. Large and small stars denote the hypocenters of a Mjma 7.0 earthquake on Apr. 11, 2011 and a Mjma 6.4 earthquake on Apr. 12, 2011 respectively. Red triangles show volcanoes (Geological Survey of Japan 2013). Red bold lines in (A) and (B), and red squares in (C) show the location of surface traces of active faults.

地震活動と地震波速度構造との比較 (Okada et al. (2015)に一部加筆)
2.1 2008年岩手・宮城内陸地震ひずみ集中帯

- 東北日本弧の第四紀テクトニクスは、東西圧縮応力による逆断層の活動に特徴づけられる。
- 産業技術総合研究所(2009)では、岩手・宮城内陸地震は、地質学的ひずみ集中域と、測地学的ひずみ集中域の重なったところで発生しているとしている。

2008年の宮城県北部地震、2004年新潟県中越地震、2007年新潟県中越沖地震、2008年岩手・宮城内陸地震は、いずれも地質学的ひずみ集中域と測地学的ひずみ集中域の重なったところで発生。

The 2003 Miyagiken-Hokubu, 2004 Chuetsu, 2007 Chuetsu-oki, and 2008 Iwate-Miyagi earthquakes occurred in areas where two types of high strain areas based on geologic structure and geodetic data are superposed.

（岡村行信）

(産業技術総合研究所(2009)に一部加筆)
2.1 2008年岩手・宮城内陸地震
ひずみ集中帯・震源域周辺の地震活動と地震波速度構造

【防災科学技術研究所】
・東北地方において短縮ひずみレートが特に顕著な箇所として3箇所のひずみ集中帯を指摘しているが、1つのグループは脊梁山脈沿いのひずみ集中帯内に位置している。

【岡田ほか(2008)要約】
・脊梁山地に沿う地震活動帯(A)と、それと平行に分布する南南東～北北西方向の地震活動帯(B)が見られる。
・これら2つの地震活動帯は、それぞれ東西ひずみ分布の短縮ひずみが顕著な2つの領域に対応する。
・これらの地震帯の直下(地殻中部～下部)には、部分溶融域を示唆する地震波低速度領域が認められる。
・今回の地震の震源断層は震源域付近の不均質構造と密接に関わっている。
・今回の地震は、互いにほぼ平行な2つの地震帯が、北部であたかも収束するようにみえる領域付近で発生した。
2.1 2008年岩手・宮城内陸地震

北上山地(牡鹿半島)の地質とブーゲー重力異常

- Okuma and Kanaya (2005) では、東北地方の岩石物性と地球物理学的データの有効性を主眼とした報告がされている。
- これによれば、北上山地の古第三紀から白亜紀の花崗岩に磁気特性・重力特性との関係があるとされている。

(Okuma and Kanaya (2005)に一部加筆)
2.1 2008年岩手・宮城内陸地震
敷地周辺陸域の地形、地質・地質構造【重力異常図】

- 高重力領域と低重力領域の境界は、比較的急勾配をなし、概ねNNW-SSE方向に連なる。
- 高重力異常の分布域は、概ね中・古生界分布域に対応している。
- 奥入江-上野断層の推定位置は、高重力異常の分布域と低重力異常の分布域の境界付近の急勾配部に概ね対応している。
- 加護坊山-箟岳山断層の位置は、高重力異常の分布域が尾根状に西側へ張り出す位置付近に概ね対応している。
- 石巻平野の海岸線沿いの沿岸海域には、高重力異常の分布域が尾根状に西側に張り出すパターンが認められる。

産業技術総合研究所(2013)のデータを使用
ブーゲー密度は2.67g/cm³と仮定
ブーゲー異常値のコンター間隔は2mGal
2.1 2008年岩手・宮城内陸地震
まとめ

- 2008年岩手・宮城内陸地震の震源域は、火山と近接し、新第三紀以降の火山岩、堆積岩が厚く分布した地域に該当。
- 女川原子力発電所敷地周辺は、背景とする火山との関係、地質・地質構造、測地学・地震学的知見等より、同様な条件の地域でないと判断されることから、地震観測記録の収集対象外とする。

<table>
<thead>
<tr>
<th>項目</th>
<th>岩手・宮城内陸地震・震源域</th>
<th>女川原子力発電所敷地周辺*</th>
</tr>
</thead>
<tbody>
<tr>
<td>地質構成</td>
<td>新第三系（堆積岩、火山岩等）、第四紀火山岩類
火山フロント内の火山地域</td>
<td>中・古生界（堆積岩、火山岩、深成岩類）
火山フロント外（東側）の非火山地域</td>
</tr>
<tr>
<td>【特記】</td>
<td>新第三紀以降のカルデラ構造及び地すべり地形が密集
基盤の地質分布は断続的であり、地質構造の連続的な理解が難しい</td>
<td>基盤岩の地質構造が連続的に分布
（中・古生界の地質構造は連続的に理解可能）</td>
</tr>
<tr>
<td>地質構造</td>
<td>中新世以降～現在に形成された褶曲及び断層</td>
<td>中生代白亜紀（約一億年前）に形成された褶曲及び断層</td>
</tr>
<tr>
<td>変動地形</td>
<td>長大な活断層帯の南方延長部で発生した地震
変動地形の認定をさまたげる地形・地質的な要因が多いにもかかわらず、短い変動地形が認識できる</td>
<td>変動地形は認められない</td>
</tr>
<tr>
<td>地震地体構造</td>
<td>東北日本弧内帯（8C）：
火山性内弧・隆起優勢、地震活動も活発な地域</td>
<td>東北日本弧外帯（8B）：
外弧隆起帯の安定域、地震活動も低い地域</td>
</tr>
<tr>
<td>測地学的知見</td>
<td>地質学的及び測地学的ひずみ集中帯の重なった領域内に位置</td>
<td>ひずみ集中帯の領域外に位置（中生代白亜紀以降に大きな変動が認められない安定した地域に位置することと対応）
なお、ブーゲー重力異常においても、牡鹿半島を含む北上山地と石巻平野以西の境界には重力異常の急変帯を挟んでおり、地殻構造は大きく異なることが示される</td>
</tr>
<tr>
<td>地震学的知見 (S波・P波速度偏差)</td>
<td>南北走向の逆断層活動が顕著
地震発生前より微小地震がクラスター的に発生
震源域の下方にS波・P波速度偏差の低速度域がある</td>
<td>顕著な地震活動は認められない
敷地周辺の活断層と関連する微小地震はみられない
敷地周辺の下方にはS波・P波速度偏差の低速度域はない</td>
</tr>
</tbody>
</table>

* ここでは、敷地の位置する北上山地南端部・牡鹿半島地域を指す。
2.2 2000年鳥取県西部地震
地震の概要

発生日時 2000/10/6 13:30
震央地名 鳥取県西部
緯度 35° 16.4′N
経度 133° 20.9′E
深さ 9km
規模 M7.3(Mw6.6)

震度 観測点名
6強 鳥取県 境港市、日野町
6弱 鳥取県 泊町、会見町、岸本町、日吉津村、淀江町、溝口町
5強 鳥取県 米子市、岡山県 新見市、香川県 土庄町他

(気象庁震度データベースによる)

地震概要

・負傷者 138名、全壊家屋 371棟
・余震 北北西—南南東方向に約30km分布
・発震機構 東西方向圧縮軸 左横ずれ断層型
・1990年、1997年に今回の余震域でM5クラスが発生
・1926年以降今回の震源近傍で3つ被害地震が発生

過去の被害地震(1926年～2000年)

発震機構 (CMT解及びP波初動による解)

震央分布図 (2000年10月1日～10月31日)

過去の被害地震(1926年～2000年)
2.2 2000年鳥取県西部地震

地質・地質構造【震源域周辺の特徴①】

- 古第三紀の花崗岩類が広く分布。
- 新第三紀中新世に貫入した安山岩～玄武岩質の岩脈が頻繁に分布（井上ほか（2002））。

中国地方における白亜紀～古第三紀貫入岩類の分布
（日本の地質増補版編集委員会編（2005）に一部加筆）

震源付近のシームレス地質図
（産業技術総合研究所，地質図Naviに一部加筆）
2.2 2000年鳥取県西部地震
地質・地質構造【震源域周辺の特徴②】

20万分の1日本シームレス地質図 全国統一凡例

(産業技術総合研究所, 20万分の1日本シームレス地質図)
2. 2 2002年鳥取県西部地震
地質・地質構造【女川原子力発電所敷地周辺の特徴】

【敷地周辺の地質・地質構造の特徴】
- 敷地は、硬質な中・古生界の砂岩及び頁岩を主とする堆積岩類等が広く分布する北上山地南端部に位置する。
- 中・古生界の堆積岩類は、褶曲構造による繰り返しを伴いながら概ね北西から南東にむかって年代が新しくなるように広く分布する。
- 敷地は、北上山地南端部のうち、南部の牡鹿半島付近の中生界ジュラ系分布域に位置し、敷地周辺と同様に褶曲構造で特徴づけられ、大別的には1組の背斜・向斜（小屋取背斜と鳴浜向斜）が認められる。
- 敷地周辺には、中・古生界に対応する高重力領域が広がっており、敷地は、この広範な高重力異常分布域のほぼ中央付近に位置する。

- 産業技術総合研究所（2013）のデータを使用
- ブーゲー密度は2.67g/cm^3と仮定
- ブーゲー異常値のコンター間隔は2mGal

敷地周辺の地質・地質構造の特徴
- 敷地は、硬質な中・古生界の砂岩及び頁岩を主とする堆積岩類等が広く分布する北上山地南端部に位置する。
- 中・古生界の堆積岩類は、褶曲構造による繰り返しを伴いながら概ね北西から南東にむかって年代が新しくなるように広く分布する。
- 敷地は、北上山地南端部のうち、南部の牡鹿半島付近の中生界ジュラ系分布域に位置し、敷地周辺と同様に褶曲構造で特徴づけられ、大別的には1組の背斜・向斜（小屋取背斜と鳴浜向斜）が認められる。
- 敷地周辺には、中・古生界に対応する高重力領域が広がっており、敷地は、この広範な高重力異常分布域のほぼ中央付近に位置する。

産業技術総合研究所（2013）のデータを使用
ブーゲー密度は2.67g/cm^3と仮定
ブーゲー異常値のコンター間隔は2mGal

敷地周辺海域の地質平面図
敷地周辺海域の地質断面図(D-D')
敷地の地質断面図(C-C'断面(東西反転))
2. 2 2000年鳥取県西部地震
火山フロント

- 2000年鳥取県西部地震の震源域周辺は、火山フロントに近接する。一方、女川原子力発電所の敷地周辺は火山フロント外に位置する。
2.2 2000年鳥取県西部地震
活断層の特徴①

【岡田(2002)】

・ 山陰地域の活断層の特徴を総括した岡田(2002)によると、「鳥取県西部地震はまだ地表には一連の活断層として姿を現していない(到達していない)地下深部の断層による活動とみなされ」、「第四紀中期以降新たに断層面を形成して、断層が発達しつつあり、活断層の発達過程としては初期ないし未成熟な段階にある」とされている。

・ また、山陰地域は「日本列島の中でも特異な地域」で「西南日本弧の日本海側変動帯にくみこまれつつあり、第四紀中期以降から地殻運動が徐々に活発化しているとみなされ」、当地域にはWNW-ESE方向の圧縮場のもとでENE-WSWとNNW-SSEの方向の横ずれ活断層が発現しているとされている。

<table>
<thead>
<tr>
<th>丹後半島から鳥取半島までの山陰地域にみられる活断層について、共通する特徴を以下にまとめる。</th>
</tr>
</thead>
<tbody>
<tr>
<td>1）変位地形は全体として不明瞭であり、累積変位量はいずれも数百m以下と少ない。</td>
</tr>
<tr>
<td>2）ENE-WNWとNNW-SSEの方向の横ずれ活断層が卓越する。中国山地の北側から南部日本海の地域までに、こうした活断層の分布が見られている。</td>
</tr>
<tr>
<td>3）数本の活断層が雁行状に配列したり、仮走や分岐が顕著にみられる。直線状に連続する断層線も長さは25km以下と相対的に短く。</td>
</tr>
<tr>
<td>4）断層破砕帯の発達は顕著でなく、既存の大断層が再活動した形跡はない。ほとんどの活断層は新たに破断面を形成しつつあるので、破砕帯の幅は数十cm程度とごく限られているようである。</td>
</tr>
<tr>
<td>5）第四紀中期以降新たに新たな断層面を形成して、断層が発達しつつあり、活断層の発達過程としては初期ないし未成熟な段階にある。</td>
</tr>
<tr>
<td>6）WNW-ESE方向からの圧縮場のもとで活断層が発現しており、不鮮明なリニアメントでも断層域の可能性があるので、注意して調査する必要がある。</td>
</tr>
<tr>
<td>7）1900年代は千年振りに訪れた地震活動の活動期にあたり、大地震の起こった周辺域は注目すべき時期にあたる。</td>
</tr>
</tbody>
</table>
2. 2 2000年鳥取県西部地震
活断層の特徴②

【伏島ほか(2001)】

- 地表断層及び人工構造物の破壊・変形は以下の通り認められ、地震断層は明瞭ではないが、断続的に出現している。
- 北西－南東方向に直線状に配列。
- 本震震央の北西側約4km～南東側約2km、幅1km強の帯状地域に5つ認められた。地震断層長さ(地震断層の出現が確認された帯状地域の長さ)は約6km。
- 地表面の断層はN40±25°Wの走向。
- 数cm～10数cmの左横ずれ走向隔離。

第2図 調査結果の概要 国土地理院発行2万5千分の1地形図「井尻」を使用。
Fig. 2. Map showing the outline of the results of our investigation.
2.2 2000年鳥取県西部地震
活断層の特徴③

事前に詳細な調査を実施すれば、震源の位置、ある程度の規模の予測までが特定可能と考えられるが、地表地震断層としては全体が明瞭に現れておらず、震源が特定しにくい地震であった。

【青柳ほか(2004)】

ブーゲー異常の変化部は単なる地質構造の境界でなく基盤の断層構造、すなわち地殻内の弱線構造を反映していると考えられる。2000年鳥取県西部地震は(省略)北北西－南南東方向の地殻内の既存の弱線を利用して発生したと考えられる。

地震前に撮影した空中写真で判読されるリニアメントの方向は、余震分布の形態に対応している。

アスペリティの位置は、リニアメントの分布密度が高い領域と一致している。

【本多ほか(2002)】
2.2 2000年鳥取県西部地震
活断層の特徴④

2000年鳥取県西部地震震源域の反射断面
- 反射断面から鳥取県西部地震震源域の地下構造が不均質であることが示唆される。

【宮腰ほか(2004)より抜粋】
「2つの断層が地下深部でくさび形に収斂する構造は、横ずれ変位を伴う断層運動の累積によって形成されたと解釈される。また、地下に「フラワーストラクチャー」が存在するという事実は、この地域のリニアメントが左横ずれ傾向を伴っていることとも整合的である。」
活断層の活動度・成熟度に関する知見

- 井上ほか(2002)によると、2000年鳥取県西部地震震源域に震源断層の方向とほぼ一致する短く断続するリニアメント群が判読され、これらの断層は横ずれ断層に伴うフラワー構造を呈して地下では1本の断層に収斂すると推定されている。
- また、「これらは若い未成熟な断層であることが推定」されており、「詳細な調査を実施していれば、事前にある程度の規模の地震発生のポテンシャルがあることが推定可能であったと考えられ」ているとされている。

【井上ほか(2002)より抜粋】
(1)2000年鳥取県西部地震は、これまで活断層が図示されていない地域で発生した。しかし、地震波の解析[菊地(2000)],余震分布などから、地下に震源断層が推定され、その変位量は1.6mとされている。
(2)この地震活動に伴って、地表地震断層の一部が出現した可能性が指摘されているが[松浦他(2000),伏島・他(2001)],地下の推定断層変位量を有する断層は地表で確認されていない。
(3)今回の地震の震源域周辺での詳細な空中写真判読により、短く断続するリニアメント群が判読される。これらは、想定されている震源断層の方向とほぼ一致している。
(4)地表踏査により、これらのリニアメント沿いで多くの断層露頭が確認され、断層面には水平から水平に近い条線が認められる。これらの断層の一部は第四紀層を変位させている。したがって、これらのリニアメントは断層活動によって形成されたことが考えられる。
(5)これらの断層群の分布状況、反射法地震探査結果[阿部・他(2001)],微小地震観測結果[青柳・他(2001)]などから、これらの断層は横ずれ断層に伴うフラワー構造を呈していることが推定される。また、このフラワー構造の下部では、断層が1本に収斂しており、これが震源断層と推定される。さらに、上田・谷(1999),Ueta et al. (2000)の断層模型実験や地震の特徴などから、これらは若い未成熟な断層であることが推定される。このため、今回の地震では、地表近くまで破壊が進行したもの、地表に明瞭な地震断層が出現しなかったことが考えられる。
(6)各断層露頭の性状やトレンチ調査結果などから、この地震の震源断層は過去に繰り返し活動したことが考えられる。また、1回前の活動は、A.D.770～1,260年の間にあり、この地域のこの間の歴史地震としては、A.D.880年の「出雲の地震」が記載されており[宇佐美(1996)],震源断層の活動によって、地表まで破壊が進行する断層はその都度異なることが考えられるもの、震源断層としての活動間隔は比較的短いものと推定される。
(7)これらの調査は地震後の調査であるが、仮に地震前にこれらの詳細な調査を実施していれば、事前にある程度の規模の地震発生のポテンシャルがあることが推定可能であったと考えられる。
2.2 2000年鳥取県西部地震
活断層【女川原子力発電所 敷地周辺で評価する活断層の総合評価】
2.2 2000年鳥取県西部地震
地震地体構造

○ 壇見ほか(2003)による地震地体構造区分
- 2000年鳥取県西部地震の震源域は、“中国山地・瀬戸内海(10C5)”に位置する。
- 女川原子力発電所は、“東北日本弧外帯(8B)”に位置する。

<table>
<thead>
<tr>
<th>項 目</th>
<th>2000年鳥取県西部地震の震源域</th>
<th>女川原子力発電所敷地周辺</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 構造区</td>
<td>10C5 中国山地・瀬戸内海</td>
<td>8B 東北日本弧外帯</td>
</tr>
<tr>
<td>(2) 地形・地質</td>
<td>北半部は安定隆起域, 南半部は沈降域, 北部に火山</td>
<td>外弧隆起帯, 安定域</td>
</tr>
<tr>
<td>(3) 活断層の密度・長さ・活動度・断層型ほか特徴</td>
<td>小, 中(長), B(A), 橫・逆, 北東(右), 北西(左)が卓越, 東西(逆)はやや古い, 南端は中央構造線</td>
<td>極小, 短(長), C, 逆・横</td>
</tr>
<tr>
<td>(4) 浅発大・中地震活動</td>
<td>中(1885年以降は北部で高) 瀬戸内海地域でやや深い 東西圧縮横ずれ断層型</td>
<td>低</td>
</tr>
</tbody>
</table>

(壺見ほか(2003)に一部加筆)
2.2 2000年鳥取県西部地震
震源メカニズム

・山陰地方の主な地震は横ずれ型の断層タイプである。
・東日本では、逆断層型が多く、西日本は横ずれ型の内陸地殻内地震が発生している。

国内の対象地震: 22個（1995年～）

赤色: 正断層
黄色: 横ずれ断層
青色: 逆断層
2. 2000年鳥取県西部地震
まる

- 2000年鳥取県西部地震の震源域は、“活断層の未成熟な地域”に該当。
- 女川原子力発電所敷地周辺は、当該震源域と地震学的に応力場の空間的違いから地震の発生メカニズムが異なり、また、背景とする地質構成及び地質構造等から同様な条件の地域でないと判断されることから、観測記録収集対象外とする。

<table>
<thead>
<tr>
<th>項目</th>
<th>鳥取県西部地震の震源域</th>
<th>女川原子力発電所敷地周辺*</th>
</tr>
</thead>
<tbody>
<tr>
<td>地質構成</td>
<td>• 白亜紀～古第三紀の花崗岩が主体</td>
<td>• 中・古生界(堆積岩、火山岩、深成岩類)</td>
</tr>
<tr>
<td></td>
<td>• 新第三紀中新世の安山岩～玄武岩の岩脈が分布</td>
<td>• 火山フロント外(東側)の非火山地域</td>
</tr>
<tr>
<td></td>
<td>• 火山フロントに近接</td>
<td></td>
</tr>
<tr>
<td></td>
<td>【特記】</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 第四紀中期以降に新たな断層面が形成され活断層が発達しつつある</td>
<td>• 基盤岩の地質構造が連続的に分布</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(中・古生界の地質構造は連続的に理解可能)</td>
</tr>
<tr>
<td>地質構造</td>
<td>• 花崗岩体が広く分布</td>
<td>• 中生代白亜紀(約一億年前)に形成された褶曲及び断層</td>
</tr>
<tr>
<td>変動地形</td>
<td>• 活断層が未成熟な地域で全体的に不明瞭</td>
<td>• 変動地形は認められない</td>
</tr>
<tr>
<td>地震地体構造</td>
<td>• 中国山地・瀬戸内海(10C5):活断層密度が低い割りに地震活動の活発な地域</td>
<td>• 東北日本弧外帯(8B):外弧隆起帯の安定域、地震活動も低い地域</td>
</tr>
<tr>
<td>地震学的知見</td>
<td>• 主に横ずれ型の断層タイプ</td>
<td>• 広域的には逆断層型のタイプが主体だが、敷地周辺での顕著な地震活動はみられない</td>
</tr>
</tbody>
</table>

* ここでは、敷地の位置する北上山地南端部・牡鹿半島地域を指す。
3. Mw6.5未満の地震について
3.1 観測記録の収集・整理
検討フロー

・「基準地震動及び耐震設計方針に係る審査ガイド」において、震源を特定せず策定する地震動の収集対象とされている16地震のうち、Mw6.5未満の14地震を対象として、震源近傍における観測記録を収集し、検討を実施。

観測記録の整理
対象：防災科学技術研究所のK-NET、KiK-netの観測記録
① 震央距離：30km以内
② K-NETの地盤条件：岩盤+AVS30が500m/s以上

観測記録の抽出
加藤ほか（2004）と暫定的な比較を実施
① KiK-net：地中観測記録×2
② K-NET：地表観測記録

詳細に検討すべき対象地震の選定
① KiK-net：加藤ほか（2004）の応答スペクトルを上回ると想定される記録
② K-NET：地表観測記録で特に影響が大きいと考えられる記録
3.1 観測記録の収集・整理

14地震の観測記録（地表）

- 14地震の観測記録（地表）の応答スペクトルを重ね書き、加藤ほか（2004）の応答スペクトルと比較する。
3.1 観測記録の収集・整理
14地震の観測記録（地中）

- 14地震の観測記録（地中）の応答スペクトルを重ね書き、加藤ほか(2004)の応答スペクトルと比較する。

14地震の観測記録（地中）の応答スペクトルと加藤ほか(2004)の応答スペクトル
3.1 観測記録の収集・整理
KiK-net観測点における基盤地震動の検討

- 収録した観測記録のうち、敷地に与える影響が大きいと考えられる観測記録を用いて基盤地震動を検討する。
- KiK-net観測点の地中記録の2倍が基盤地震動に相当すると仮定し、加藤ほか（2004）の応答スペクトルと比較すると、2011年和歌山県北部地震・WKYH01（広川）、2013年栃木県北部地震・TCGH07（栗山西）、2011年茨城県北部地震・IBRH13（高萩）の観測記録が、加藤ほか（2004）の応答スペクトルを上回る。

14地震の観測記録（地中×2）の応答スペクトルと加藤ほか（2004）の応答スペクトル
3.1 観測記録の収集・整理
検討対象地震の選定

- KiK-net観測点で基盤地震動が加藤ほか(2004)の応答スペクトルを上回ると想定される3記録（下表の①～③）、及びK-NET観測点の観測記録で特に影響が大きいと考えられる2記録（下表の④～⑤）の観測された5地震を検討対象地震として選定し、以降で詳細に検討する。

Mw6.5未満の検討対象地震

<table>
<thead>
<tr>
<th>No.</th>
<th>地震名及日時</th>
<th>観測点</th>
<th>地震規模</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>2013年栃木県北部地震 2013.02.25 16:23</td>
<td>TCGH07(栗山西)</td>
<td>Mw5.8</td>
</tr>
<tr>
<td>②</td>
<td>2011年茨城県北部地震 2011.03.19 18:56</td>
<td>IBRH13(高萩)</td>
<td>Mw5.8</td>
</tr>
<tr>
<td>③</td>
<td>2011年和歌山県北部地震 2011.07.05 19:18</td>
<td>WKYH01(広川)</td>
<td>Mw5.0</td>
</tr>
<tr>
<td>⑤</td>
<td>2011年長野県北部地震 2011.03.12 03:59</td>
<td>NIG023(津南)</td>
<td>Mw6.2</td>
</tr>
</tbody>
</table>
概要

発生日時: 2004/12/14 14:56

震央地名: 留萌地方南部

緯度: 44° 04.6′N

経度: 141° 41.9′E

深さ: 9km

規模: M6.1(Mw5.7)

震度分布

観測点名

- 5強: 苫前町旭(旧)
- 5弱: 羽幌町南3条
- 4弱: 秩父別町役場(旧)
- 刈溝町仲町(旧)
- 羽幌町焼尻
- 初山別村有明

(気象庁震度データベースによる)

震央分布図

- (1997年10月～, M≧1.5)
- (1900年～, M≧3.5)

発震機構

(P波初動解)

(地震調査研究推進本部 地震調査委員会 2004年12月の地震活動の評価)

- 1995年5月23日の地震
- 2004年北海道留萌支庁南部地震及び周辺で発生した主な地震

震度分布(気象庁報道発表資料 2004.12.14 16:00) (気象庁報道発表資料 2005.1.11 17:00)
3.2 2004年北海道留萌支庁南部地震観測記録（K-NET, KiK-net）

- 震央距離が30km以内の観測記録としては下表の5記録になる。
- このうち、震源近傍に位置するHKD020（港町）においては、最大加速度1127.2cm/s²が観測されており、司・翠川（1999）の距離減衰式の+1σを上回る。

<table>
<thead>
<tr>
<th>観測点</th>
<th>震源距離 (km)</th>
<th>AVS30 (m/s)</th>
<th>Amax (cm/s²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-NET (地表)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HKD020</td>
<td>港町</td>
<td>12.1</td>
<td>562.7</td>
</tr>
<tr>
<td>HKD024</td>
<td>通町</td>
<td>15.6</td>
<td>337.2</td>
</tr>
<tr>
<td>HKD021</td>
<td>留萌</td>
<td>18.1</td>
<td>302.0</td>
</tr>
<tr>
<td>KiK-net (地表・地中)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMIH05</td>
<td>小平西</td>
<td>12.5</td>
<td>218.1</td>
</tr>
<tr>
<td>HKD020</td>
<td>港町</td>
<td>12.1</td>
<td>562.7</td>
</tr>
<tr>
<td>HKD024</td>
<td>通町</td>
<td>15.6</td>
<td>337.2</td>
</tr>
<tr>
<td>HKD021</td>
<td>留萌</td>
<td>18.1</td>
<td>302.0</td>
</tr>
<tr>
<td>RMIH04</td>
<td>小平東</td>
<td>22.8</td>
<td>543.3</td>
</tr>
</tbody>
</table>

※()内は地中観測記録

司・翠川（1999）の距離減衰式との関係
3.2 2004年北海道留萌支庁南部地震観測記録(K-NET)

- K-NET観測点の観測記録のうち、HKD020(港町)の観測記録は、加藤ほか(2004)の応答スペクトルを大きく上回る。また、HKD024(達布)の観測記録は、HKD020(港町)のEW成分の観測記録に包絡される。
3.2 2004年北海道留萌支庁南部地震観測記録(KiK-net地表)

- KiK-net観測点の地表観測記録は、すべて加藤ほか(2004)の応答スペクトルに包絡される。

KiK-net各観測記録(地表)の応答スベクトルと加藤ほか(2004)の応答スペクトルの比較
3.2 2004年北海道留萌支庁南部地震観測記録(KiK-net 地中)

- KiK-net観測点の地中観測記録(地中×2)は、すべて加藤ほか(2004)の応答スペクトルに包絡される。

KiK-net各観測記録(地中×2)の応答スペクトルと加藤ほか(2004)の応答スペクトルの比較
3.2 2004年北海道留萌支庁南部地震
佐藤ほか(2013)

- HKD020(港町)の地質構造・速度構造の把握を目的として、地震計設置地点から北西約5mの同一標高位置
 で、深さ300m(G.L.-300m)までのボーリング掘削をオールコア採取で実施している。
- G.L.-13m付近までの岩盤は亀裂が多く、岩盤が脆いことを示唆している。また、それ以深の岩盤層については、
 泥岩・砂岩の互層が主体で、そのうちG.L.-30m付近、さらにG.L.-41m以深に礫岩層が存在する構成となっている。

HKD020(港町)におけるボーリングコア写真
(左:深さ0m〜24m, 右:深さ24m〜48m)
3.2 2004年北海道留萌支庁南部地震
佐藤ほか(2013)

- ボーリング孔を用いて, G.L.-150mまではダウンホール法とサスペンション法, G.L.-300mまではサスペンション法によるPS検層を実施している。
- PS検層によるS波速度構造から, V_Sが700m/s以上となる明瞭な速度境界としての基盤層を, V_Sが938m/sとなるG.L.-41mに設定している。また, その深さのV_Pが2,215m/sであるため, V_Pの観点からみても基盤層の深さは妥当としている。
- 狐崎ほか(1990)による既往の経験式より, V_Sが700m/s以上では, V_Pが2,000m/sを超えている。

HKD020(港町)におけるPS検層結果と既往の研究によるS波速度構造モデル

HKD020(港町)のPS検層結果によるV_P-V_S関係と既往の経験式の比較
3. 2 2004年北海道留萌支庁南部地震
佐藤ほか(2013)

- ダウンホール法によるPS検層結果のV_Sが500m/s以下のG.L.-6mまでのS波速度を、笹谷ほか(2008)による位相速度を説明できるように若干修正し、HKD020(港町)の地盤モデルを作成している。
- HKD020(港町)の地盤モデルによるSH波の理論増幅特性の卓越周期は、微動H/Vスペクトルの卓越周期と周期0.02秒程度のごく短周期までよく対応している。K-NET地盤情報によるSH波の理論増幅特性は、微動H/Vスペクトルの卓越を説明できない。
- 以上から、佐藤ほか(2013)によるHKD020(港町)の地盤モデルは、より妥当なモデルであると結論づけている。
3. 2 2004年北海道留萌支庁南部地震
佐藤ほか(2013)

- G.L.-6mまでの土質地盤の6点について、GPサンプリングにより試料採取し、0.2Hzの正弦波による繰返し三軸試験によって地盤の剛性G及び減衰hのひずみγ依存性を取得している。
- ひずみレベル10^{-4}オーダーでG/G_0が0.6程度、すなわち初期の剛性から4割程度低下している。
- G/G_0のひずみ依存性に関する既往の経験式との対応が良い。
- 室内試験を実施した砂、礫混じり砂、礫、風化砂岩に対応するG.L.-6m程度までの地盤は、強震時に非線形性を生じやすい特性であるとしている。

HKD020(港町)における表層地盤のG/G_0のひずみγ依存性と既往の経験式の比較
HKD020(港町)における表層地盤の減衰定数hのひずみγ依存性と既往の経験式の比較
3.2 2004年北海道留萌支庁南部地震
佐藤ほか(2013)

- G.L.-6mまでの層については、室内試験結果を用いてH-Dモデルにより非線形特性\((G/G_0 - \gamma, h-\gamma)\)を設定している。

等価線形解析において設定した地盤の非線形特性
3.2 2004年北海道留萌支庁南部地震
佐藤ほか(2013)

- 等価線形解析により、地表観測記録(EW成分)からG.L.-41mの基盤地震動を評価している。
- はぎとり結果の最大加速度は585cm/s²で、地表観測記録の約1/2となっている。

推計された基盤地震動と地表観測記録の比較

速度に変換した基盤地震動と地表観測記録の比較

擬似速度応答スペクトルの比較
3.2 2004年北海道留萌支庁南部地震
佐藤ほか(2013)

- 体積弾性率一定を仮定した1次元波動論による線形解析により、地表観測記録(UD成分)からG.L.-41mの基盤地震動を評価している。
- はぎとり結果の最大加速度は296cm/s²となっている。

鉛直成分の基盤地震動の推計結果

2004年留萌地震時のP波速度と減衰定数
3.2 2004年北海道留萌支庁南部地震
佐藤ほか(2013)

- 佐藤ほか(2013)では、K-NET観測点のHKD020(港町)について、G.L.-6mまでの室内試験結果を考慮した非線形解析を行い、G.L.-41mの基盤面における基盤地震動を評価している(G.L.-6m以深は線形解析を仮定、減衰定数は1%に設定)。
- 上記の基盤地震動の評価結果について妥当性を確認するため、以下の追加検討を実施する。
 ① 佐藤ほか(2013)の報告時点以降に得られた、G.L.-6mからG.L.-41mまでの室内試験結果を用い、G.L.-41mまでの非線形性を考慮して基盤地震動(水平成分)を評価。
 ② 不確かさを考慮した基盤地震動の評価として、G.L.-6mまでは非線形、G.L.-6m以深は減衰定数を3%として基盤地震動(水平成分)を評価。
 ③ 佐藤ほか(2013)の報告時点以降に得られた、PS検層の再測定結果から、地盤モデルを変更して基盤地震動(鉛直成分)を評価(解析方法は佐藤ほか(2013)と同様)。
 ④ HKD020(港町)における地下水位の状況を踏まえ、G.L.-6mまではポアソン比一定、G.L.-6m以深は体積弾性率一定として基盤地震動(鉛直成分)を評価。
追加検討①：G.L.-41mまで非線形性考慮
- G.L.-6mからG.L.-41mまでの5ヶ所において、室内試験を実施した。

これまで非線形性を考慮していた範囲

追加試験①
（砂岩1）

追加試験②
（礫岩）
追加試験③
（泥岩1）

追加試験④
（砂岩2）

Depth: 0m～24m
Depth: 24m～48m

追加試験⑤
（泥岩2）

（基盤）

追加の室内試験の実施位置
追加検討①：G.L.-41mまで非線形性考慮
- 追加の室内試験結果により非線形性を設定した。
追加検討①: G.L.-41mまで非線形性考慮

- G.L.-6mからG.L.-41mの地盤の非線形特性と減衰定数を変動させて、等価線形解析によりG.L.-41mでの基盤地震動を評価した。

等価線形解析に用いる地盤モデル

<table>
<thead>
<tr>
<th>S波速度 Vs(m/s)</th>
<th>密度ρ (1000kg/m³)</th>
<th>層厚 H(m)</th>
<th>減衰定数h (初期値)</th>
<th>非線形特性</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>1.9</td>
<td>0.5</td>
<td>0.02</td>
<td>砂</td>
</tr>
<tr>
<td>200</td>
<td>2.0</td>
<td>0.5</td>
<td>0.03</td>
<td>砂混じり砂</td>
</tr>
<tr>
<td>200</td>
<td>2.0</td>
<td>1</td>
<td>0.02</td>
<td>砂</td>
</tr>
<tr>
<td>290</td>
<td>2.0</td>
<td>1</td>
<td>0.01</td>
<td>砂2</td>
</tr>
<tr>
<td>290</td>
<td>2.0</td>
<td>1</td>
<td>0.01</td>
<td>風化砂岩1</td>
</tr>
<tr>
<td>370</td>
<td>2.0</td>
<td>1</td>
<td>0.01</td>
<td>風化砂岩2</td>
</tr>
<tr>
<td>400</td>
<td>2.0</td>
<td>1</td>
<td>0.02</td>
<td>砂岩1</td>
</tr>
<tr>
<td>473</td>
<td>2.0</td>
<td>1</td>
<td>0.02</td>
<td>砂岩1</td>
</tr>
<tr>
<td>549</td>
<td>2.0</td>
<td>3</td>
<td>0.02</td>
<td>砂岩1</td>
</tr>
<tr>
<td>549</td>
<td>2.0</td>
<td>2</td>
<td>0.01</td>
<td>泥岩1</td>
</tr>
<tr>
<td>549</td>
<td>2.0</td>
<td>1</td>
<td>0.03</td>
<td>砂岩</td>
</tr>
<tr>
<td>549</td>
<td>2.0</td>
<td>0.5</td>
<td>0.01</td>
<td>泥岩1</td>
</tr>
<tr>
<td>549</td>
<td>2.0</td>
<td>2.5</td>
<td>0.01</td>
<td>砂岩2</td>
</tr>
<tr>
<td>604</td>
<td>2.06</td>
<td>7</td>
<td>0.01</td>
<td>砂岩2</td>
</tr>
<tr>
<td>653</td>
<td>2.06</td>
<td>18</td>
<td>0.015</td>
<td>泥岩2</td>
</tr>
<tr>
<td>938</td>
<td>2.13</td>
<td>17</td>
<td>0.01</td>
<td>—</td>
</tr>
</tbody>
</table>
追加検討①: G.L.-41mまで非線形性考慮

- 地表観測記録を入力として、G.L.-41mまで非線形性を考慮した等価線形解析から、G.L.-41m(V_s=938m/s)における基盤地震動を評価した。

等価線形解析の条件

- 有効ひずみγ_eff = 0.65 γ_max
- 収束判定値(前のモデルとの差異): 1%以内
- 最大繰り返し計算回数: 30回
追加検討①: G.L.-41mまで非線形性考慮

- G.L.-41mまで非線形性を考慮した基盤地震動の最大加速度は561cm/s²となっており、佐藤ほか(2013)による基盤地震動(585cm/s²)と比較すると、やや小さく評価された。

地表観測記録と基盤地震動の比較

- 追加検討①と佐藤ほか(2013)の比較

- 基盤地震動と地表観測記録の加速度フーリエスペクトルの比較

- 地表記録が基盤地震動と同じもしくは小さい。(増幅しない)
- 地表記録が大きい。(増幅する)
追加検討①: G.L.-41mまで非線形性考慮
- G.L.-41mまで非線形性を考慮した基盤地震動の応答スペクトルは、佐藤ほか(2013)による応答スペクトルとほぼ同程度となっている。

擬似速度応答スペクトルの比較
追加検討①：G.L.-41mまで非線形性考慮
- 収束物性値の深さ分布によると、G.L.-6m以深における減衰定数の収束物性値は、概ね5%程度となっている。

3.2 2004年北海道留萌支庁南部地震
追加検討①

収束物性値、最大加速度及び最大ひずみの深さ分布
追加検討①: G.L.-41mまで非線形性考慮

- G.L.-41mまで非線形性を考慮した基盤地震動評価に用いた収束物性値による伝達関数は、佐藤ほか(2013)の物性値による伝達関数と比較して、深部の減衰定数が1%から5%程度になったことにより、10Hzより高振動数側で小さくなっている。
追加検討①のまとめ

- 2004年北海道留萌支庁南部地震におけるHKD020(港町)の観測記録について, 追加の室内試験結果を用い, G.L.-41mまで非線形性を考慮して基盤地震動を評価した。
- 基盤地震動の最大加速度は561cm/s²となっており, 佐藤ほか(2013)による基盤地震動 (585cm/s²)と比較してやや小さく評価されている。また, 基盤地震動の応答スペクトルは, 佐藤ほか(2013)による応答スペクトルとほぼ同程度となっている。
3.2 2004年北海道留萌支庁南部地震 追加検討②

追加検討②：減衰定数の不確かさ考慮

- 佐藤ほか（2013）の地盤モデルに基づき、G.L.-6mまで非線形、G.L.-6m以深を減衰定数3%として基盤地震動を評価し、佐藤ほか（2013）の評価結果と比較する。

等価線形解析に用いる地盤モデル

<table>
<thead>
<tr>
<th>S波速度 V_s (m/s)</th>
<th>密度 ρ (1000kg/m³)</th>
<th>層厚 H (m)</th>
<th>減衰定数 h (初期値)</th>
<th>非線形特性</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>1.9</td>
<td>0.5</td>
<td>0.02</td>
<td>砂</td>
</tr>
<tr>
<td>200</td>
<td>2.0</td>
<td>0.5</td>
<td>0.03</td>
<td>砂混じり砂</td>
</tr>
<tr>
<td>200</td>
<td>2.0</td>
<td>1</td>
<td>0.02</td>
<td>砂1</td>
</tr>
<tr>
<td>290</td>
<td>2.0</td>
<td>1</td>
<td>0.01</td>
<td>砂2</td>
</tr>
<tr>
<td>290</td>
<td>2.0</td>
<td>1</td>
<td>0.01</td>
<td>風化砂岩1</td>
</tr>
<tr>
<td>370</td>
<td>2.0</td>
<td>1</td>
<td>0.01</td>
<td>風化砂岩2</td>
</tr>
<tr>
<td>400</td>
<td>2.0</td>
<td>1</td>
<td>0.01</td>
<td>風化砂岩2</td>
</tr>
<tr>
<td>473</td>
<td>2.0</td>
<td>1</td>
<td>0.03</td>
<td>ー</td>
</tr>
<tr>
<td>549</td>
<td>2.0</td>
<td>3</td>
<td>0.03</td>
<td>ー</td>
</tr>
<tr>
<td>549</td>
<td>2.0</td>
<td>2</td>
<td>0.03</td>
<td>ー</td>
</tr>
<tr>
<td>549</td>
<td>2.0</td>
<td>1</td>
<td>0.03</td>
<td>ー</td>
</tr>
<tr>
<td>549</td>
<td>2.0</td>
<td>0.5</td>
<td>0.03</td>
<td>ー</td>
</tr>
<tr>
<td>549</td>
<td>2.0</td>
<td>2.5</td>
<td>0.03</td>
<td>ー</td>
</tr>
<tr>
<td>604</td>
<td>2.06</td>
<td>7</td>
<td>0.03</td>
<td>ー</td>
</tr>
<tr>
<td>653</td>
<td>2.06</td>
<td>18</td>
<td>0.03</td>
<td>ー</td>
</tr>
<tr>
<td>938</td>
<td>2.13</td>
<td>17</td>
<td>0.03</td>
<td>ー</td>
</tr>
</tbody>
</table>

減衰定数3%として評価する。
追加検討②：減衰定数の不確かさ考慮

佐藤ほか（2013）の地盤モデルに基づき、G.L.-6m以深を減衰定数3%とした基盤地震動の最大加速度は609cm/s²となっており、佐藤ほか（2013）による基盤地震動（585cm/s²）と比較すると、やや大きく評価されている。また、その応答スペクトルは、佐藤ほか（2013）による応答スペクトルとほぼ同程度となっている。
追加検討②：減衰定数の不確かさ考慮

収束物性値による伝達関数は、佐藤ほか（2013）の物性値による伝達関数と同様に、本震時のH/Vスペクトルの特徴をよく再現していると考えられる。

収束物性値による伝達関数とH/Vスペクトルの比較
追加検討②のまとめ

- 2004年北海道留萌支庁南部地震におけるHKD020(港町)の観測記録について、佐藤ほか (2013) の地盤モデルに基づき、G.L.-6mまで非線形、G.L.-6m以深を減衰定数3%として基盤地震動を評価した。
- 基盤地震動の最大加速度は609cm/s²となっており、佐藤ほか (2013) による基盤地震動 (585cm/s²) と比較してやや大きく評価されている。また、基盤地震動の応答スペクトルは、佐藤ほか (2013) による応答スペクトルとほぼ同等となっている。
- 収束物性値による伝達関数は、佐藤ほか (2013) の物性値による伝達関数と同様に、本震時の H/Vスペクトルの特徴をよく再現する結果となっている。
追加検討③:地盤モデル変更による基盤地震動(鉛直成分)評価

再測定結果によるG.L.-6mまでのP波速度は、佐藤ほか(2013)の地盤モデルと異なるため、再測定結果を反映した地盤モデルにより、鉛直成分の基盤地震動が再評価された。

※再測定結果によるS波速度は、佐藤ほか(2013)の地盤モデルとほぼ同様のため変更していない。
追加検討③: 地盤モデル変更による基盤地震動（鉛直成分）評価

PS検層の再測定結果を反映した地盤モデルを用い、体積弾性率一定としてG.L.-41mの鉛直成分の基盤地震動を評価した結果、その最大加速度は306cm/s²となり、佐藤ほか（2013）による基盤地震動（296cm/s²）と比較すると、やや大きく評価された。

3. 2 2004年北海道留萌支庁南部地震
追加検討③

追加検討③: 地盤モデル変更による基盤地震動（鉛直成分）評価

PS検層の再測定結果を反映した地盤モデルを用い、体積弾性率一定としてG.L.-41mの鉛直成分の基盤地震動を評価した結果、その最大加速度は306cm/s²となり、佐藤ほか（2013）による基盤地震動（296cm/s²）と比較すると、やや大きく評価された。
追加検討③のまとめ

佐藤ほか（2013）のHKD020（港町）のP波速度モデルは、笹谷ほか（2008）による位相速度を説明できないことから表層部分のPS検層を再測定し、再測定結果を反映した地盤モデルを設定した。

上記地盤モデルを用い、体積弾性率一定としてG.L.-41mの鉛直成分の基盤地震動を評価した結果、その最大加速度は306cm/s²となり、佐藤ほか（2013）による基盤地震動（296cm/s²）と比較すると、やや大きい。
3.2 2004年北海道留萌支庁南部地震
追加検討④

追加検討④: G.L.-6mまでポアソン比一定とした基盤地震動（鉛直成分）評価

- 佐藤ほか(2013)及び追加検討③における鉛直成分の基盤地震動は、体積弾性率一定として評価しているが、地下水位の状況を踏まえ、G.L.-6mまでポアソン比一定、G.L.-6m以深を体積弾性率一定とした場合の鉛直成分の基盤地震動を評価した。
- 体積弾性率一定とした場合と比較して、ポアソン比一定とした場合、S波速度の低下に伴ってP波速度も低下するため、最大加速度は小さくなっている。
- その結果、最大加速度は262cm/s²となり、体積弾性率一定と仮定した結果（306cm/s²）は保守的な結果となっている。
追加検討④のまとめ

● 地下水位の状況を踏まえ，G.L.-6mまでポアソン比一定，G.L.-6m以深を体積弾性率一定とした場合の鉛直成分の基盤地震動を評価した。
● G.L.-41mの基盤地震動を評価した結果，その最大加速度は262cm/s²となり，体積弾性率一定と仮定した結果(306cm/s²)は保守的な結果となっている。
3.2 2004年北海道留萌支庁南部地震
まとめ

- 佐藤ほか(2013)による2004年北海道留萌支庁南部地震におけるHKD020(港町)の基盤地震動評価について、以下の検討を実施した。
 ① G.L.-41mまで非線形性を考慮した基盤地震動評価(水平成分)
 ② G.L.-6m〜G.L.-41mの減衰定数を3%とした基盤地震動評価(水平成分)
 ③ 再測定されたPS検層結果を踏まえた基盤地震動評価(鉛直成分)
 ④ 地下水位の状況を踏まえG.L.-6mまでのポアソン比一定とした基盤地震動評価(鉛直成分)

- 上記の①〜④の検討結果によると、HKD020(港町)の基盤地震動は水平成分についてはケース②(609cm/s²), 鉛直成分についてはケース③(306cm/s²)が最も大きいものとなった。
3.3 2013年栃木県北部地震
概要

発生日時: 2013/2/25 16:23
震央地名: 栃木県北部
緯度: 36° 52.4′N
経度: 139° 24.7′E
深さ: 3km
規模: M6.3(Mw5.8)

<table>
<thead>
<tr>
<th>震度</th>
<th>観測点名</th>
</tr>
</thead>
<tbody>
<tr>
<td>5強</td>
<td>日光市湯元</td>
</tr>
<tr>
<td>5弱</td>
<td>一</td>
</tr>
<tr>
<td>4</td>
<td>日光市中鉢石町,日光市日陰,那須塩原市塩原庁舎</td>
</tr>
</tbody>
</table>

(気象庁震度データベースによる)

発震機構解[CMT解 速報]

発震機構解[CMT解 速報]
Nw=5.8

(気象庁報道発表資料 2013.2.25 17:30)

震央分布図
(2013/2/1～3/31 深さ0～20km M≧1.0)

(気象庁報道発表資料 2013.2.25 17:30)

東北電力
3.3 2013年栃木県北部地震
震源周辺の地質構造

栃木県北部地震の震源域には、後期中新世の奥鬼怒カルデラ並びに同噴出物が分布する。
震源域周辺には、後期中新世～鮮新世に活動したカルデラ火山群があり、これらの近傍には前期～後期更新世に活動した第四紀火山が分布する。このうち、高原山・白根山・燧ケ岳(尾瀬)は、完新世に活動実績を持つ活火山であることから、この地域では火山活動が継続し、地殻浅部～深部の地質構造に様々な制約を与えていると想定される。
栃木県北部地震は、西北西－東南東方向に圧縮軸を持つ、横ずれ断層型である。余震分布は、南北方向からやや反時計回りに並んでおり、震源断層は南北系と想定される。
震源域周辺には、確実度が低い活断層が分布しているが、東西系の走向に近いことから、震源断層は活断層と無関係とみられている。

地質・カルデラと震央の分布図
【地震速報】2013年2月25日栃木県北部の地震
(電力中央研究所提供(2013))
3.3 2013年栃木県北部地震観測記録（K-NET, KiK-net）

- 震央距離が30km以内の観測記録としては下表の10記録になる。
- このうち、震源近傍に位置するTCGH07(栗山西)においては、地表で最大加速度1224.3cm/s²が観測されており、司・翠川(1999)の距離減衰式の+1σを上回る。

K-NET及びKiK-netの最大加速度

<table>
<thead>
<tr>
<th>観測点</th>
<th>震源距離 (km)</th>
<th>AVS30 (m/s)</th>
<th>Amax(cm/s²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCG004</td>
<td>8.1</td>
<td>421.0</td>
<td>196.8 269.5 283.2</td>
</tr>
<tr>
<td>FKS029</td>
<td>16.3</td>
<td>492.2</td>
<td>199.8 339.2 146.0</td>
</tr>
<tr>
<td>GNM001</td>
<td>20.4</td>
<td>462.1</td>
<td>168.2 231.5 100.9</td>
</tr>
<tr>
<td>TCG010</td>
<td>26.8</td>
<td>516.8</td>
<td>12.2 20.0 12.9</td>
</tr>
<tr>
<td>TCG003</td>
<td>27.9</td>
<td>345.5</td>
<td>56.9 55.4 28.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>観測点</th>
<th>震源距離 (km)</th>
<th>AVS30 (m/s)</th>
<th>Amax(cm/s²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCG007</td>
<td>4.7</td>
<td>419.5</td>
<td>1224.3 296.2 168.2</td>
</tr>
<tr>
<td>FKSH07</td>
<td>15.8</td>
<td>828.9</td>
<td>91.7 105.3 74.1</td>
</tr>
<tr>
<td>TCG008</td>
<td>21.0</td>
<td>723.2</td>
<td>69.8 62.2 42.8</td>
</tr>
<tr>
<td>GNM007</td>
<td>26.6</td>
<td>647.5</td>
<td>74.6 69.0 54.2</td>
</tr>
<tr>
<td>TCGH17</td>
<td>27.9</td>
<td>1432.8</td>
<td>34.2 30.3 17.4</td>
</tr>
</tbody>
</table>

震源距離が30km以内の観測記録としてはK-NET及びKiK-netの最大加速度が記録される。

司・翠川(1999)の距離減衰式との関係
3.3 2013年栃木県北部地震
観測記録(K-NET)

- K-NET観測点の観測記録のうち、FKS029(桧枝岐)及びTCG004(湯元)の観測記録は、加藤ほか(2004)の応答スペクトルを一部の周期で上回る。
- いずれの観測点も、次項以降に示すTCGH07(栗山西)の観測記録(地中×2)に概ね包絡される。

K-NET各観測記録の応答スペクトルと加藤ほか(2004)の応答スペクトルの比較
3.3 2013年栃木県北部地震
観測記録(KiK-net 地表)

- KiK-net観測点の地表観測記録のうち、TCGH07(栗山西)の観測記録は、加藤ほか(2004)の応答スペクトルを上回る。

KiK-net各観測記録(地表)の応答スペクトルと加藤ほか(2004)の応答スペクトルの比較
3.3 2013年栃木県北部地震観測記録（KiK-net 地中）

KiK-net観測点の地中観測記録（地中×2）のうち、TCGH07（栗山西）の観測記録は、加藤ほか(2004)の応答スペクトルを上回る。

KiK-net各観測記録（地中×2）の応答スペクトルと加藤ほか(2004)の応答スペクトルの比較
3.3 2013年栃木県北部地震 引間(2015)

- 2013年栃木県北部地震の余震記録等を対象としたスペクトルインバージョンにより、TCGH07(栗山西)の観測記録を分析している。その結果、TCGH07(栗山西)の地中地震計で顕著な0.2秒程度のピークについては本震が位置する西・近傍領域からの地震動のみに特徴的にみられ、サイトの比較的近傍での伝播特性・サイト特性が影響しているものと推察されるとしている。

解析に用いた震央と観測点
到来方向の区分と地震数を合わせて記す

TCGH07(栗山西)での観測波形と擬似速度応答スペクトル(h=5%)

全データを用いた解析結果
(b)地表地震計
(c)地中地震計の増幅率

TCGH07(栗山西)での到来方向別のサイト増幅率
(a)地表地震計 (b)地中地震計

東北電力
3.3 2013年栃木県北部地震
はぎとり解析

- TCGH07（栗山西）について、KiK-netボーリングデータを初期値として、観測記録の伝達関数を再現できるように地盤同定を実施。
- 得られた地盤モデルは、PS検層結果から大きく乖離しているため、1次元波動論によるはぎとり解析の適用が困難と考えられる。

<table>
<thead>
<tr>
<th>No</th>
<th>THK (m)</th>
<th>DEP (m)</th>
<th>Den (g/cm³)</th>
<th>S波速度 (m/s)</th>
<th>減衰定数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial</td>
<td>Lower</td>
<td>Upper</td>
<td>Optimized</td>
<td>ho</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>0</td>
<td>1.64</td>
<td>220</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>4</td>
<td>1.64</td>
<td>400</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>22</td>
<td>1.64</td>
<td>960</td>
<td>480</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>32</td>
<td>2.33</td>
<td>1250</td>
<td>1250</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>72</td>
<td>2.33</td>
<td>1870</td>
<td>1870</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>100</td>
<td>2.33</td>
<td>1870</td>
<td>1870</td>
</tr>
</tbody>
</table>

※電力共通研究「東北地方太平洋沖地震を踏まえた地震動評価手法の高度化に関する研究」にて検討を実施
3.4 2011年茨城県北部地震
概要

発生日時: 2011/3/19 18:56
震央地名: 茨城県北部
緯度: 36°47.0′N
経度: 140°34.2′E
深さ: 5km
規模: M6.1 (Mw5.8)

発震機構解[CMT解 速報]
(気象庁震度データベースによる)

震度観測点名
5強: 日立市
常陸太田市, 高萩市, 笠間市, ひたちなか市, 常陸大宮市, 那珂市, 城里町, 土浦市, 五霞町

震度分布図
2011/3/11以来は未処理のデータ有り
(気象庁 防災平成23年3月 地震・火山月報(防災編)に一部加筆)
3.4 2011年茨城県北部地震
震源周辺の地質構造

茨城県北部地震は、東北地方太平洋沖地震（3.11地震）の誘発地震と考えられており、3.11地震直後から3つのステージで震源域が拡大。

阿武隈南部には、変成岩（原岩：ジュラ紀以前、変成：前期白亜紀）、花崗岩（前期白亜紀）が広く分布するが、地震後の稠密余震観測等の結果、高速度域は変成岩、低速度域は花崗岩に対応し誘発地震は地質構造に規制されていると考えられている。

茨城県北部地震を含むエリアには関ロー米平リニアメント（Sk-Yn）、関口-黒磯リニアメント（Sk-Kr）、棚倉破砕帯西縁断層（Tn）が分布する。地震活動は、竹貫及び日立変成岩に挟まれた花崗岩分布域に対応して北北西-南南東方向に延び、南西傾斜を示している。

地震活動が関ロー米平リニアメントを横断し、関ロー黒磯リニアメントと走向が異なることから、北部地震は、両断層と無関係とみられている。
3.4 2011年茨城県北部地震観測記録(K-NET, KiK-net)

- 震央距離が30km以内の観測記録としては下表の11記録となる。
- このうち、震源近傍に位置するIBRH13(高萩)においては、地表で最大加速度1026.5cm/s²が観測されており、司・翠川(1999)の距離減衰式の+1σを上回る。

<table>
<thead>
<tr>
<th>震源距離(km)</th>
<th>AVS30 (m/s)</th>
<th>Amax(cm/s²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS</td>
<td>EW</td>
<td>UD</td>
</tr>
<tr>
<td>IBR019 北茨城</td>
<td>14.3</td>
<td>-</td>
</tr>
<tr>
<td>IBR002 高萩</td>
<td>15.8</td>
<td>344.8</td>
</tr>
<tr>
<td>FKS014 矢祭</td>
<td>16.6</td>
<td>506.1</td>
</tr>
<tr>
<td>IBR001 大子</td>
<td>19.9</td>
<td>208.4</td>
</tr>
<tr>
<td>IBR003 日立</td>
<td>23.0</td>
<td>292.2</td>
</tr>
<tr>
<td>FKS012 勿来</td>
<td>24.6</td>
<td>202.8</td>
</tr>
<tr>
<td>IBR004 大宮</td>
<td>30.0</td>
<td>325.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>震源距離(km)</th>
<th>AVS30 (m/s)</th>
<th>Amax(cm/s²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS</td>
<td>EW</td>
<td>UD</td>
</tr>
<tr>
<td>IBR13 高萩</td>
<td>5.5</td>
<td>-</td>
</tr>
<tr>
<td>IBR14 十王</td>
<td>11.7</td>
<td>-</td>
</tr>
<tr>
<td>IBR16 山方</td>
<td>22.9</td>
<td>-</td>
</tr>
<tr>
<td>IBR12 大子</td>
<td>24.0</td>
<td>-</td>
</tr>
</tbody>
</table>

K-NET及びKiK-netの最大加速度

司・翠川(1999)の距離減衰式との関係
3.4 2011年茨城県北部地震
観測記録(K-NET)

- K-NET観測点の観測記録のうち、IBR003(日立)及びIBR004(大宮)の観測記録は、加藤ほか(2004)の応答スペクトルを一部の周期で上回る。
- いずれの観測点も、次項以降に示すIBR13(高萩)の影響度よりも小さいと考えられる。

K-NET各観測記録の応答スペクトルと加藤ほか(2004)の応答スペクトルの比較
3.4 2011年茨城県北部地震観測記録(KiK-net 地表)

- KiK-net観測点の地表観測記録のうち、IBRH13(高萩)及びIBRH14(十王)の観測記録は、加藤ほか(2004)の応答スペクトルを上回る。
- IBRH14(十王)の地表観測記録については、次項に示す地中観測記録について加藤ほか(2004)を下回ることから、影響度は小さいと考えられる。

KiK-net個観測記録(地表)の応答スペクトルと加藤ほか(2004)の応答スペクトルの比較
3.4 2011年茨城県北部地震
観測記録(KiK-net 地中)

- KiK-net観測点の地中観測記録(地中×2)のうち、IBRH13(高萩)の観測記録は、加藤ほか(2004)の応答スペクトルを一部の周期で上回る。

KiK-net各観測記録(地中×2)の応答スペクトルと加藤ほか(2004)の応答スペクトルの比較
3.4 2011年茨城県北部地震
はぎとり解析

- IBRH13(高萩)について、KiK-netボーリングデータを初期値として、観測記録の伝達関数を再現できるように地盤同定を実施。
- 得られた地盤モデルは、表層のV_sが極端に小さく、また、上下動の観測記録の伝達関数を再現できていないため、1次元波動論によるはぎとり解析の適用が困難と考えられる。

<table>
<thead>
<tr>
<th>No</th>
<th>TKH (m)</th>
<th>DEP (m)</th>
<th>Den (g/cm^3)</th>
<th>S波速度(m/s)</th>
<th>滅衰定数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial</td>
<td>Lower</td>
<td>Upper</td>
<td>Optimized</td>
<td>Opt./Init.</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1.64</td>
<td>170</td>
<td>17</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>1.64</td>
<td>280</td>
<td>140</td>
<td>420</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>1.93</td>
<td>400</td>
<td>200</td>
<td>600</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>1.93</td>
<td>600</td>
<td>300</td>
<td>900</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>2.26</td>
<td>1050</td>
<td>1050</td>
<td>1050</td>
</tr>
<tr>
<td>6</td>
<td>32</td>
<td>4.42</td>
<td>2600</td>
<td>2600</td>
<td>2600</td>
</tr>
<tr>
<td>7</td>
<td>24</td>
<td>2.52</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>8</td>
<td>100</td>
<td>2.52</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No</th>
<th>TKH (m)</th>
<th>DEP (m)</th>
<th>Den (g/cm^3)</th>
<th>P波速度(m/s)</th>
<th>滅衰定数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial</td>
<td>Lower</td>
<td>Upper</td>
<td>Optimized</td>
<td>Opt./Init.</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1.64</td>
<td>250</td>
<td>25</td>
<td>375</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>1.64</td>
<td>460</td>
<td>115</td>
<td>690</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>1.93</td>
<td>2050</td>
<td>513</td>
<td>3075</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>1.93</td>
<td>2050</td>
<td>513</td>
<td>3075</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>2.26</td>
<td>3200</td>
<td>3200</td>
<td>3200</td>
</tr>
<tr>
<td>6</td>
<td>32</td>
<td>4.42</td>
<td>4900</td>
<td>4900</td>
<td>4900</td>
</tr>
<tr>
<td>7</td>
<td>24</td>
<td>2.52</td>
<td>4900</td>
<td>4900</td>
<td>4900</td>
</tr>
<tr>
<td>8</td>
<td>100</td>
<td>2.52</td>
<td>4900</td>
<td>4900</td>
<td>4900</td>
</tr>
</tbody>
</table>

※ 電力共通研究「東北地方太平洋沿岸地震を踏まえた地震動評価手法の高度化に関する研究」にて検討を実施
3.5 2011年和歌山県北部地震
概要

発生日時: 2011/7/5 19:18
震央地名: 和歌山県北部
緯度: 33°59.4′N
経度: 135°14.0′E
深さ: 7km
規模: M5.5 (Mw5.0)

観測点名

<table>
<thead>
<tr>
<th>震度</th>
<th>観測点名</th>
</tr>
</thead>
<tbody>
<tr>
<td>5強</td>
<td>広川町, 日高川町</td>
</tr>
<tr>
<td>5弱</td>
<td>有田市, 湯浅町</td>
</tr>
</tbody>
</table>

発震機構解[CMT解 速報]

CMT解(速報)

Mw=5.0

震央分布図

(1997/10/1～2011/7/31
深さ0～30km M≧2.0)

細線で地震調査研究推進本部による主要活断層を表示。

震度分布図

気象庁震度データベースによる

気象庁報道発表資料 2011.7.5 20:50

地震調査研究推進本部 地震調査委員会
2011年7月の地震活動の評価

気象庁報道発表資料 2011.7.5 20:50
3.5 2011年和歌山県北部地震
震源周辺の地質構造

- 2011年和歌山県北部地震の震源域には、古第三紀日高川層群（上部）が分布する。
- 震源近傍には、仏像構造線があるが、活断層としての確実度は低いとされている。
- 震源は、仏像構造線付近で、三波川変成岩類と四万十帯の境界にあたる。和歌山市周辺に三角形で分布する三波川帯（一部秩父帯）は微小地震発生域と対応している。今回の震源付近では、仏像構造線は北あるいは北西傾斜の逆断層。
- 2011年和歌山県北部地震は、北西－南東方向に圧縮軸を持つ逆断層型である。

地質図
(和歌山県防災計画 平成27年度修正版)
3.5 2011年和歌山県北部地震観測記録(K-NET, KiK-net)

- 震央距離が30km以内の観測記録としては下表の6記録になる。
- このうち、震源近傍に位置するWKYH01(広川)においては、最大加速度1064.5cm/s²が観測されており、司・翠川(1999)の距離減衰式の+1σを上回る。

K-NET及びKiK-netの最大加速度

<table>
<thead>
<tr>
<th>観測点</th>
<th>震源距離(km)</th>
<th>AVS30(m/s)</th>
<th>Amax(cm/s²)</th>
<th>NS</th>
<th>EW</th>
<th>UD</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-NET (地表)</td>
<td>WKY006</td>
<td>御坊</td>
<td>15.3</td>
<td>198.4</td>
<td>88.3</td>
<td>117.5</td>
</tr>
<tr>
<td></td>
<td>WKY003</td>
<td>有田</td>
<td>17.9</td>
<td>144.0</td>
<td>92.9</td>
<td>141.6</td>
</tr>
<tr>
<td></td>
<td>WKY004</td>
<td>清水</td>
<td>22.2</td>
<td>681.8</td>
<td>115.4</td>
<td>152.6</td>
</tr>
<tr>
<td></td>
<td>WKY005</td>
<td>龍神</td>
<td>26.8</td>
<td>338.3</td>
<td>45.7</td>
<td>74.1</td>
</tr>
<tr>
<td></td>
<td>WKY001</td>
<td>和歌山</td>
<td>28.1</td>
<td>206.3</td>
<td>43.4</td>
<td>46.4</td>
</tr>
<tr>
<td>KiK-net (地中)</td>
<td>WKYH01</td>
<td>広川</td>
<td>7.7</td>
<td>462.9</td>
<td>754.2</td>
<td>1064.5</td>
</tr>
</tbody>
</table>

※()内は地中観測記録
3.5 2011年和歌山県北部地震観測記録(K-NET)

- K-NET観測点の観測記録は、すべて加藤ほか(2004)の応答スペクトルに包絡される。

K-NET観測記録の応答スペクトルと加藤ほか(2004)の応答スペクトルの比較
3.5 2011年和歌山県北部地震
観測記録(KiK-net 地表)

・KiK-net観測点の地表観測記録のうち、WKYH01(広川)の観測記録は、加藤ほか(2004)の応答スペクトルを一部の周期で上回る。

KiK-net各観測記録(地表)の応答スペクトルと加藤ほか(2004)の応答スペクトルの比較

![水平成分のスペクトル](image1)

![鉛直成分のスペクトル](image2)
3.5 2011年和歌山県北部地震観測記録（KiK-net 地中）

- KiK-net観測点の中の観測記録（地中×2）のうち、WKYH01（広川）の観測記録は、加藤ほか（2004）の応答スペクトルを一部の周期で上回る。

KiK-net各観測記録（地中×2）の応答スペクトルと加藤ほか（2004）の応答スペクトルの比較
3.5 2011年和歌山県北部地震
はぎとり解析

- WKYH01(広川)について、KiK-netボーリングデータを初期値として、観測記録の伝達関数を再現できるように地盤同定を実施。
- 得られた地盤モデルは、PS検層結果から大きく乖離しているため、1次元波動論によるはぎとり解析の適用が困難と考えられる。

<table>
<thead>
<tr>
<th>No</th>
<th>THK (m)</th>
<th>DEP (m)</th>
<th>Den (g/cm³)</th>
<th>Initial</th>
<th>Lower</th>
<th>Upper</th>
<th>Optimized</th>
<th>Opt./Ini.</th>
<th>減衰定数 (ho, α)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1.64</td>
<td>139</td>
<td>14</td>
<td>209</td>
<td>78</td>
<td>0.56</td>
<td>0.298, 0.324</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1.82</td>
<td>139</td>
<td>35</td>
<td>417</td>
<td>225</td>
<td>1.62</td>
<td>1.07</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>4</td>
<td>1.82</td>
<td>296</td>
<td>74</td>
<td>888</td>
<td>524</td>
<td>1.77</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>34</td>
<td>10</td>
<td>2.37</td>
<td>1269</td>
<td>888</td>
<td>1904</td>
<td>1354</td>
<td>1.07</td>
<td>0.284, 0.715</td>
</tr>
<tr>
<td>5</td>
<td>57</td>
<td>44</td>
<td>2.37</td>
<td>1580</td>
<td>1106</td>
<td>2370</td>
<td>1686</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>—</td>
<td>101</td>
<td>2.37</td>
<td>1580</td>
<td>1106</td>
<td>2370</td>
<td>1686</td>
<td>1.07</td>
<td></td>
</tr>
</tbody>
</table>

伝達関数の比較（水平方向）

地盤同定結果（水平方向）
地盤同定結果（鉛直方向）

※電力共通研究「東北地方太平洋沖地震を踏まえた地震動評価手法の高度化に関する研究」にて検討を実施
3.6 2011年長野県北部地震
概要

- 概要(発生日時，地震規模等)
 | 発生日時 | 2011/3/12 03:59 |
 | 震央地名 | 長野県北部 |
 | 緯度 | 36° 59.1′N |
 | 経度 | 138° 35.8′E |
 | 深さ | 8km |
 | 規模 | M6.7(Mw6.2) |

- 震度観測点名
 | 震度 | 観測点名 |
 | 6強 | 栄村北信 |
 | 5弱 | 野沢温泉村豊郷 |

- 震度分布図
 (1923/8/1〜2011/3/12 深さ80km以浅 M≥5.0)
 (気象庁震度データベースによる)

- 発震機構解[CMT解 速報]
 (気象庁報道発表資料 2011.3.12 5:00)

- 震央分布図
 (1997/10/1〜2011/3/12 深さ30km以浅 M≥3.0)
 (気象庁地震データベースによる)
3. 6 2011年長野県北部地震
震源周辺の地質構造

- 2011年長野県北部地震の震源付近には、堆積岩類及び火山岩類（新第三紀中新世～第四紀完新世）が分布する。
- 震源付近には、十日町断層帯の西端に位置する宮野原断層、青倉断層があり、これらは活断層と推定されている。
- 震源断層は、北西－南東方向の圧縮軸を持つ南東傾斜の逆断層とみられている。また、余震の震源分布の投影図から、余震域の北東側と南西側では、断層面の傾斜が異なる可能性があると見られている。
- 余震分布の震源域の北端に、松之山背斜がほぼ一致することから、南東傾斜の断層は、松之山背斜と関連した断層構造である可能性が高いと想定されている。また、松之山が隆起した解釈とも調和的であり、地震によって松之山背斜が成長した可能性があるとみられている。

3月12日長野県北部の地震に伴う地変と栄村周辺地域の活断層
（廣内ほか（2012）に一部加筆）
3. 6 2011年長野県北部地震観測記録(K-NET, KiK-net)

- 震央距離が30km以内の観測記録としては下表の10記録となる。
- このうち、震源近傍に位置するNIG023(津南)においては、最大加速度703.7cm/s²が観測されており、司・翠川(1999)の距離減衰式の+1σを上回る。

K-NET及びKiK-netの最大加速度

<table>
<thead>
<tr>
<th>観測点</th>
<th>震源距離(km)</th>
<th>AVS30 (m/s)</th>
<th>Amax(cm/s²)</th>
<th>NS</th>
<th>EW</th>
<th>UD</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-NET (地表)</td>
<td>NIG023 津南</td>
<td>10.2</td>
<td>579.5</td>
<td>535.7</td>
<td>703.7</td>
<td>316.2</td>
</tr>
<tr>
<td></td>
<td>NIG021 十日町</td>
<td>22.2</td>
<td>418.8</td>
<td>277.9</td>
<td>248.5</td>
<td>125.5</td>
</tr>
<tr>
<td></td>
<td>NIG024 安塚</td>
<td>22.4</td>
<td>340.2</td>
<td>337.5</td>
<td>216.8</td>
<td>113.0</td>
</tr>
<tr>
<td></td>
<td>NIG022 塩沢</td>
<td>24.3</td>
<td>197.0</td>
<td>113.4</td>
<td>134.1</td>
<td>73.0</td>
</tr>
<tr>
<td></td>
<td>NGN001 飯山</td>
<td>26.8</td>
<td>324.9</td>
<td>92.1</td>
<td>94.4</td>
<td>47.9</td>
</tr>
<tr>
<td>KiK-net (地中)</td>
<td>NIGH13 牧</td>
<td>21.2</td>
<td>461.1</td>
<td>143.1</td>
<td>135.9</td>
<td>69.6</td>
</tr>
<tr>
<td></td>
<td>NIGH14 塩沢</td>
<td>24.6</td>
<td>437.6</td>
<td>300.0</td>
<td>346.1</td>
<td>149.0</td>
</tr>
<tr>
<td></td>
<td>NIGH11 川西</td>
<td>25.9</td>
<td>375.0</td>
<td>238.5</td>
<td>158.4</td>
<td>90.6</td>
</tr>
<tr>
<td></td>
<td>NIGH19 湯沢</td>
<td>26.9</td>
<td>625.0</td>
<td>139.8</td>
<td>127.3</td>
<td>70.5</td>
</tr>
<tr>
<td></td>
<td>NGNH29 野沢温泉</td>
<td>18.3</td>
<td>464.9</td>
<td>279.5 (67.8)</td>
<td>323.8 (106.5)</td>
<td>259.1 (65.6)</td>
</tr>
<tr>
<td></td>
<td>NIGH13 牧</td>
<td>21.2</td>
<td>461.1</td>
<td>143.1 (74.3)</td>
<td>135.9 (39.0)</td>
<td>69.6 (40.7)</td>
</tr>
<tr>
<td></td>
<td>NIGH14 塩沢</td>
<td>24.6</td>
<td>437.6</td>
<td>300.0 (48.6)</td>
<td>346.1 (56.3)</td>
<td>149.0 (31.7)</td>
</tr>
<tr>
<td></td>
<td>NIGH11 川西</td>
<td>25.9</td>
<td>375.0</td>
<td>238.5 (114.5)</td>
<td>158.4 (83.2)</td>
<td>90.6 (42.9)</td>
</tr>
<tr>
<td></td>
<td>NIGH19 湯沢</td>
<td>26.9</td>
<td>625.0</td>
<td>139.8 (35.4)</td>
<td>127.3 (34.2)</td>
<td>70.5 (6.1)</td>
</tr>
</tbody>
</table>

※1内は地中観測記録

司・翠川(1999)の距離減衰式との関係
3.6 2011年長野県北部地震
観測記録(K-NET)

- K-NET観測点の観測記録のうち、NIG023(津南)及びNIG024(安塚)の観測記録は、加藤ほか(2004)の応答スペクトルを一部の周期で上回る。
- NIG024(安塚)は、NIG023(津南)の観測記録に概ね包絡される。
KiK-net観測点の地表観測記録のうち、NGNH29（野沢温泉）及びNIGH14（塩沢）の観測記録は、加藤ほか（2004）の応答スペクトルを一部の周期で上回る。

いずれの観測点の地中観測記録についても、次項に示す地中観測記録において加藤ほか（2004）を下回るとから、影響度は小さいと考えられる。

KiK-net各観測記録（地表）の応答スペクトルと加藤ほか（2004）の応答スペクトルの比較
3.6 2011年長野県北部地震 観測記録(KiK-net 地中)

- KiK-net観測点の地中観測記録(地中×2)は、すべて加藤ほか(2004)の応答スペクトルに包絡される。

KiK-net各観測記録(地中×2)の応答スペクトルと加藤ほか(2004)の応答スペクトルの比較

KiK-net各観測記録(地中×2)の応答スペクトルと加藤ほか(2004)の応答スペクトルの比較
3.6 2011年長野県北部地震
はぎとり解析

- NIG023（津南）の観測記録については、地盤情報が乏しいため、地盤モデルが構築できない。
- 上記に伴い、はぎとり解析による基盤地震動の評価ができない。
- 今後、各種調査により地盤情報の取得が必要である。
3.7 まとめ (Mw6.5未満の地震について)

- Mw6.5未満の地震のうち、影響の大きい5地震について整理した結果を以下に示す。

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>観測点</td>
<td>HKD020(港町)</td>
<td>TCGH07(栗山西)</td>
<td>WKYH01(広川)</td>
<td>IBRH13(高萩)</td>
<td>NIG023(津南)</td>
</tr>
<tr>
<td>既往の知見との整合性</td>
<td>使用モデル</td>
<td>微動探査による地盤データと整合</td>
<td>知見で指摘されている非線形性を考慮</td>
<td>KiK-net観測記録に基づく地盤同定モデル</td>
<td>KiK-net観測記録に基づく地盤同定モデル</td>
</tr>
<tr>
<td></td>
<td>地盤モデル</td>
<td>地盤モデルの改良</td>
<td>知識で指摘されている特性に係るデータの取扱いと影響度合いの評価</td>
<td>地盤モデルの改良</td>
<td>知識で指摘されている特性に係るデータの取扱いと影響度合いの評価</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>更なる知見収集・検討事項</td>
<td>解析手法</td>
<td>非線形性を考慮した線形解析</td>
<td>観測記録と整合</td>
<td>はぎとり解析の適用性が不明</td>
<td>はぎとり解析の適用性が不明</td>
</tr>
<tr>
<td></td>
<td>精度</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>更なる知見収集・検討事項</td>
<td>地表及び地中観測記録の再現解析</td>
<td>地表及び地中観測記録の再現解析</td>
<td>地表観測記録の再現解析</td>
<td>地表観測記録の再現解析</td>
</tr>
<tr>
<td>結果の信頼性</td>
<td>○</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>
3.7 まとめ (Mw6.5未満の地震について)

- Mw6.5未満の地震のうち、影響の大きい5地震について整理した結果、2004年北海道留萌支庁南部地震のHKD020(港町)の観測記録については、信頼性のある基盤地震動が評価できたと考えられることから、震源を特定せず策定する地震動として考慮する。

- 2013年栃木県北部地震のTCGH07(栗山西)、2011年和歌山県北部地震のWKYH01(広川)、2011年茨城県北部地震のIBRH13(高萩)の観測記録については、一次元波動論では信頼性のある地盤モデルが構築できず、はぎとり解析による基盤地震動の評価は困難と考えられ、さらなる知見の収集、はぎとり解析等の検討が必要である。

- 2011年長野県北部地震のNIG023(津南)の観測記録については、地盤情報が乏しいため、地盤モデルが構築できず、はぎとり解析による基盤地震動の評価ができない。今後、各種調査により、地盤情報の取得が必要である。
4. 震源を特定せず策定する地震動の検討結果
4. 震源を特定せず策定する地震動の検討結果

■ Mw6.5以上の地震(2008年岩手・宮城内陸地震，2000年鳥取県西部地震)
地震が発生した地域と敷地周辺との地域性の違いについて検討した結果，両地震とも女川原子力発電所の敷地周辺との地域性の違いが顕著であると考えられることから，震源を特定せず策定する地震動として考慮する必要はないものと考えられる。

■ Mw6.5未満の地震
14地震を検討した結果，信頼性のある基盤地震動が評価できたと考えられる，2004年北海道留萌支庁南部地震を震源を特定せず策定する地震動として反映する。
2004年北海道留萌支庁南部地震
以下の検討結果が得られた。
・佐藤ほか(2013)によると，水平成分:585cm/s²，鉛直成分:296cm/s²と評価されている。
・はぎとり解析の不確かさ等を含めた検証結果は，水平成分:609cm/s²，鉛直成分:306cm/s²と評価される。
・なお，PS検層結果から得られているHKD020(港町)の基盤層(G.L.-41m)におけるS波速度は938m/s，P波速度は2,215m/sである。一方，女川原子力発電所の解放基盤表面相当位置においては次項に示すとおり，S波速度は1,500m/s，P波速度は2,882m/sであり，本検討結果は地盤条件的に保守性のあるものとなっている。
4. 震源を特定せず策定する地震動の検討結果
解放基盤表面相当位置以深の地下構造モデル

＞ はぎとり解析に用いる地下構造モデルと同じ速度構造を用い、減衰は強震動シミュレーション結果を踏まえ3％に設定（第128回審査会合「敷地地盤の振動特性」）。
＞ 敷地で観測された強震記録と当モデルを用いた強震動シミュレーションが整合することを確認（第128回審査会合「敷地地盤の振動特性」）。

統計的グリーン関数法に用いる浅部地下構造モデル

<table>
<thead>
<tr>
<th>上端深さ (G.L.)</th>
<th>層厚 (m)</th>
<th>密度 (t/m³)</th>
<th>V_s (m/s)</th>
<th>V_p (m/s)</th>
<th>減衰 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-27.3</td>
<td>-8.6</td>
<td>7.2</td>
<td>2.55</td>
<td>1500</td>
<td>2882</td>
</tr>
<tr>
<td>-34.5</td>
<td>-15.8</td>
<td>27.0</td>
<td>2.66</td>
<td>2000</td>
<td>4101</td>
</tr>
<tr>
<td>-61.5</td>
<td>-42.8</td>
<td>20.3</td>
<td>2.68</td>
<td>2200</td>
<td>4503</td>
</tr>
<tr>
<td>-81.8</td>
<td>-63.1</td>
<td>65.3</td>
<td></td>
<td>2600</td>
<td>5300</td>
</tr>
<tr>
<td>-147.1</td>
<td>-128.4</td>
<td>∞</td>
<td>2.68</td>
<td>3000</td>
<td>—</td>
</tr>
</tbody>
</table>

※内陸地殻内地震

Q(f) = 110\cdot f^{0.69} (f \geq 1Hz), 110(f < 1Hz) [地震本部(2005)]

注: O.P.は女川原子力発電所工事用基準面 (Onagawa peil) であり、O.P.±0m = T.P.（東京湾平均海面）–0.74m。
参考文献

2. 防災科学技術研究所 Hi-net 高感度地震観測網, http://www.hinet.bosai.go.jp/?LANG=ja
4. 第11回発電用軽水型原子炉施設の地震・津波に関わる新安全設計基準に関する検討チーム, 震基11-2-2震源を予め特定しにくい地震について
7. 産業技術総合研究所地質調査総合センター(2004), 火山 噴火と恵み
参考文献

17. Okada, T. et al. (2015), Hypocenter migration and crustal seismic velocity distribution observed for the inland earthquake swarms induced by the 2011 Tohoku-Oki earthquake in NE Japan: implications for crustal fluid distribution and crustal permeability, Geofluids, 15,293-309
22. 産業技術総合研究所地質調査総合センター(2013):日本重力CD-ROM
23. 「平成12年(2000年)鳥取県西部地震」の被害状況，鳥取地方気象台
24. 気象庁: 平成12年10月 地震・火山月報(防災編)，特集2「平成12年(2000年)鳥取県西部地震」
25. 日本の地質 増補版(2005), 日本の地質増補版編集委員会 編
27. 伏島祐一郎・吉岡敏和・水野清秀・矢倉正展・井村隆介・小笠原琢・佐々木俊法(2001):2000年鳥取県西部地震の地震断層調査, 活断層・古地震研究報告, No.1,1-26, 産業技術総合研究所地質調査総合センター
参考文献

32. 第10回発電用軽水型原子炉施設の地震・津波に関わる新安全設計基準に関する検討チーム, 震基10-3震源を特定せず策定する地震動について

34. 気象庁報道発表資料, 平成16年12月14日16時00分, 2004年12月14日14時56分の留萌支庁南部の地震について

35. 気象庁報道発表資料, 平成17年1月11日, 平成16年12月の地震活動及び火山活動について

37. 司宏俊・翠川三郎(1999):断層タイプおよび地盤条件を考慮した最大加速度・最大速度の距離減衰式, 日本建築学会構造系論文集, 523, 63-70

38. 佐藤浩章・芝良昭・功田卓・前田宣浩・藤原広行(2013):物理探査・室内試験に基づく2004年留萌支庁南部地震の地震によるK-NET港町観測点(HKD020)の基盤地震動とサイト特性評価, 電力中央研究所報告

39. 狐崎長狼・後藤典敏・小林芳正・井川猛・堀家正則・斎藤浩美・黒田徹・山根一修・奥住宏一(1990):地震動予測のための深層地盤P・S波速度の推定, 自然科学災害, 9-3, 1-17
参考文献

41. 気象庁報道発表資料, 平成25年2月25日17時30分, 平成25年2月25日16時23分頃の栃木県北部の地震について
42. 気象庁:平成25年2月 地震・火山月報(防災編)
44. 気象庁報道発表資料, 平成23年3月19日20時40分, 「平成23年(2011年)東北地方太平洋沖地震」について(第22報)
45. 気象庁:平成23年3月 地震・火山月報(防災編)
46. 青柳恭平・上田圭一(2012):2011年東北地方太平洋沖地震による阿武隈南部の正断層型誘発地震の特徴-臨時余震観測に基づく震源分布と速度構造-, 電力中央研究所報告
47. 気象庁報道発表資料, 平成23年7月5日20時50分, 平成23年7月5日19時18分頃の和歌山県北部の地震について
48. 地震調査研究推進本部地震調査委員会, 平成23年8月5日, 2011年7月の地震活動の評価, 7月5日和歌山県北部の地震,
49. 和歌山県地域防災計画 基本計画編(平成27年度修正), 和歌山県防災会議,
50. 京都大学防災研究所 地震予知研究センター 和歌山県北部の地震,
 http://www1.rcep.dpri.kyoto-u.ac.jp/events/110705n-wakayama/110705n-wakayama.html
51. 気象庁報道発表資料, 平成23年3月12日5時00分, 平成23年3月12日03時59分頃の長野県北部の地震について
52. 廣内大助・松多信尚・杉戸信彦・竹下欣宏(2012):3月12日長野県北部の地震に伴う地変と栄村周辺地域の活断層, 信州大学山岳科学総合研究所,長野県北部地震災害調査研究報告, 2012年1月27日発行